3.150 \(\int \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x)) \, dx\)

Optimal. Leaf size=66 \[ \frac{2 \sqrt{a} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{f}+\frac{2 a d \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a}} \]

[Out]

(2*Sqrt[a]*c*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/f + (2*a*d*Tan[e + f*x])/(f*Sqrt[a + a*S
ec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0868663, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3915, 3774, 203, 3792} \[ \frac{2 \sqrt{a} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{f}+\frac{2 a d \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x]),x]

[Out]

(2*Sqrt[a]*c*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/f + (2*a*d*Tan[e + f*x])/(f*Sqrt[a + a*S
ec[e + f*x]])

Rule 3915

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x)) \, dx &=c \int \sqrt{a+a \sec (e+f x)} \, dx+d \int \sec (e+f x) \sqrt{a+a \sec (e+f x)} \, dx\\ &=\frac{2 a d \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}-\frac{(2 a c) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}\\ &=\frac{2 \sqrt{a} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}+\frac{2 a d \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.316288, size = 76, normalized size = 1.15 \[ \frac{\sec \left (\frac{1}{2} (e+f x)\right ) \sqrt{a (\sec (e+f x)+1)} \left (\sqrt{2} c \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (e+f x)\right )\right ) \sqrt{\cos (e+f x)}+2 d \sin \left (\frac{1}{2} (e+f x)\right )\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x]),x]

[Out]

(Sec[(e + f*x)/2]*Sqrt[a*(1 + Sec[e + f*x])]*(Sqrt[2]*c*ArcSin[Sqrt[2]*Sin[(e + f*x)/2]]*Sqrt[Cos[e + f*x]] +
2*d*Sin[(e + f*x)/2]))/f

________________________________________________________________________________________

Maple [B]  time = 0.214, size = 118, normalized size = 1.8 \begin{align*} -{\frac{1}{f\sin \left ( fx+e \right ) }\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( fx+e \right ) }{2\,\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) c\sin \left ( fx+e \right ) +2\,d\cos \left ( fx+e \right ) -2\,d \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*sec(f*x+e))*(a+a*sec(f*x+e))^(1/2),x)

[Out]

-1/f*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)*((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(
-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))*c*sin(f*x+e)+2*d*cos(f*x+e)-2*d)/sin(f*x+e)

________________________________________________________________________________________

Maxima [B]  time = 1.6785, size = 198, normalized size = 3. \begin{align*} \frac{\sqrt{a} c \arctan \left ({\left (\cos \left (2 \, f x + 2 \, e\right )^{2} + \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, \cos \left (2 \, f x + 2 \, e\right ) + 1\right )}^{\frac{1}{4}} \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right )\right ) + \sin \left (f x + e\right ),{\left (\cos \left (2 \, f x + 2 \, e\right )^{2} + \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, \cos \left (2 \, f x + 2 \, e\right ) + 1\right )}^{\frac{1}{4}} \cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right )\right ) + \cos \left (f x + e\right )\right )}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))*(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

sqrt(a)*c*arctan2((cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*sin(1/2*arctan2(sin
(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) + sin(f*x + e), (cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x +
 2*e) + 1)^(1/4)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) + cos(f*x + e))/f

________________________________________________________________________________________

Fricas [A]  time = 1.15547, size = 620, normalized size = 9.39 \begin{align*} \left [\frac{{\left (c \cos \left (f x + e\right ) + c\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right ) + 2 \, d \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{f \cos \left (f x + e\right ) + f}, -\frac{2 \,{\left ({\left (c \cos \left (f x + e\right ) + c\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt{a} \sin \left (f x + e\right )}\right ) - d \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )\right )}}{f \cos \left (f x + e\right ) + f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))*(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[((c*cos(f*x + e) + c)*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*c
os(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)) + 2*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e
))*sin(f*x + e))/(f*cos(f*x + e) + f), -2*((c*cos(f*x + e) + c)*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f
*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(f*cos
(f*x + e) + f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sec{\left (e + f x \right )} + 1\right )} \left (c + d \sec{\left (e + f x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))*(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))*(c + d*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))*(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out